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Abstract. The collective charge state (holon) in a periodical lattice is defined. The exact com-
mutation relations for the holon operators correspond to the modified para-Fermi statistics of rank
M (M is the number of lattice sites at which the hole can be created), i.e. one state can be occupied
by up toM holons. At small concentration, the holon gas can be treated as a bosonic system. In the
general case, the holon gas is characterized by the immanent interaction and coupling among the
different holon band states, even in the absence of dynamic interactions (the so-called kinematic
interaction). In spite of the kinematic interaction, there is no statistical prohibition of Bose–Einstein
condensation in the holon system. The possible extension of the approach developed to the coupled
hole pairs in high-Tc superconductors is discussed.

1. Introduction: collective charge state

It is well established that in the high-Tc cuprates the charge carriers are positive. The study
of the hole migration process has a great importance for elucidating the mechanism of high-
Tc superconductivity; see the review by Dagotto [1]. The efficiency of charge transfer also
determines properties of organic conductors and semiconductors, and irradiated polymers.

When a hole is created in some atom in a lattice or in a monomer in a polymer, it can
migrate in a lattice or along a polymer chain. There is an equal probability for the location
of the hole at each site of the same nature. As a result, the collective state is formed. This
collective state can be considered as a charge wave or as a quasiparticle. In our paper the
statistics of such quasiparticles at arbitrary concentrations is studied. For this purpose, we use
the second-quantization formalism.

Usually holes are considered as fermion particles with spin 1/2 and positive charge. In
the second-quantization formalism, the hole operators are adjoint to the electron operators and
obey the fermion commutation relations; see [2–4]. But in real systems holes are located on
many-electron atoms or molecules and can have different values of spinS. For example, holes
in the CuO2 planes in high-Tc cuprate oxides haveS = 0; this is the so-called Zhang–Rice
singlet [5, 6]. In this study we consider holes as positive charged atoms (molecules) with
S = 0, or as spinless quasiparticles in the second-quantization formalism. In the absence of
dynamical interaction between holes, the model Hamiltonian for an arbitrary lattice with one
type of hole can be written as follows:

H = ε0

∑
n

b+
nbn +

∑
n,n′

Mnn′b+
nbn′ (1)
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whereb+
n , bn are the hole creation and annihilation operators, respectively;ε0 is the energy

of the hole creation in a lattice andMnn′ is the so-called hopping integral, characterizing the
efficiency of charge transfer (hopping) from siten to site n′. According to the theory of
resonance interaction (see section 1.2.3 in [7]), the hopping integral can be expressed in terms
of the resonance integral in the form

Mnn′ = 〈90(A
+
n′)90(An)|Vint |90(An′)90(A

+
n)〉 (2)

where90(An) and90(A
+
n) are the ground-state many-electron wave functions for neutral and

ionized atoms (monomers) located at siten. It can be shown (we will do it elsewhere) that
in the case of a one-electron wave function expression (2) has the same physical sense as the
hopping integral in the Hubbard Hamiltonian; cf. reference [8].

If the wave functions in equation (2) are not overlapping, the operatorsb+
n′ , bn acting on

different sites must commute. Thus, they obey the Bose commutation relations:[
bn, b

+
n′
]
− = [bn, bn′ ]− = [

b+
n, b

+
n′
]
− = 0 for n 6= n′. (3)

In the Hamiltonian given by equation (1) it is assumed that at a site only one hole can be
created, and that of only one type. Although the definition of the hole is quite general and it
can correspond to an arbitraryn-fold ionized state, we do not consider states with two holes
at one site. From this it follows that

(b+
n)

2|0〉 = 0 (4)

where|0〉 is the vacuum state. As the vacuum state, we consider a state in which all sites of a
lattice are neutral. The operators acting on one site satisfy the Pauli principle and the Fermi
commutation relations:[

bn, b
+
n

]
+ = 1

[bn, bn]+ = [
b+

n, b
+
n

]
+ = 0.

(5)

The operators with the commutation relations (3)–(5) are called the Pauli operators [9]
and describe paulion particles. Thus, the operators introduced for holes are paulions like the
second-quantization operators for spin [10] and electronic excitations in crystals [9] or the
Cooper pair operators [11]. But in the latter case there is an essential difference: unlike the
Cooper pair operators which are delocalized, the hole operators are localized at lattice sites.
In this aspect, they are similar to spin operators and electronic excitations in a crystal.

The Hamiltonian in equation (1) can be diagonalized by some unitary transformation:

Bq = 1√
M

∑
n

uqnbn B+
q = 1√

M

∑
n

u∗
qnb

+
n (6)

whereM is the number of lattice sites at which the hole can be created. With the new
operators, the Hamiltonian is transformed from the site representation to the quasimomentum
representation in which it has the diagonalized form

H =
∑

q

εqB
+
q Bq. (7)

The action of the operatorB+
q on the vacuum state|0〉 creates a collective charge state with

a hole distributed among all equivalent sites. This state can be considered as a quasiparticle
similar to magnon or exciton quasiparticles [9,10], so it is natural to call it aholon. For a lattice
with one atom (molecule) per cell, the holon energy is given by the following expression:

εq = ε0 +
∑

n′ (6=n)

Mnn′ exp[iq · (rn − rn′)]. (8)
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It is important to stress that the collective charge state which we named a holon is different
from the Anderson holon [12–15]. The latter is a much more specific object. It is described as
the charged spinless boson which exists always with the fermionic spin soliton (spinon). In the
Anderson model, the holon and spinon correspond to the charge and spin degrees of freedom
of electrons which can be separated (see the interesting discussion in reference [16]). As is
shown in our paper, the introduced holons are bosons only in the low-concentration limit; at
large concentration they obey the modified para-Fermi statistics.

In 1953 Green [17] and, independently, Volkov [18] showed that the bosonic and fermionic
commutation relations do not exhaust all physically possible commutation relations for field
operators in the second-quantization formalism. The field operators satisfying the requirements
of causality, relativistic invariance and positivity of energy can obey more general commutation
relations than the bosonic and fermionic ones, namely[[

a+
k , ak′

]
± , ak′′

]
−

= −2δkk′′ak′[[
a+

k , ak′
]
± , a+

k′′

]
−

= 2δk′k′′a+
k[[

a+
k , a+

k′
]
± , a+

k′′

]
−

= [
[ak, ak′ ]± , ak′′

]
− = 0.

(9)

The relations (9) with the upper sign at the inner brackets are called the parabosonic com-
mutation relations and those with the lower sign are called the parafermionic commutation
relations. These names are connected with the fact that the ordinary bosonic and fermionic
operators also obey the relations (9). But these relations are fulfilled by a more general type
of operator given by the so-called Greenansatz[17]:

ak =
p∑

ρ=1

dρk (10)

with operatorsdρk obeying the following commutation relations:[
dρk, d

+
ρk′

]
∓ = δkk′[

dρk, dρk′
]
∓ = [

d+
ρk, d

+
ρk′

]
∓ = 0[

dρk, d
+
ρ ′k′

]
± = [

dρk, dρ ′k′
]
± = [

d+
ρk, d

+
ρ ′k′

]
± = 0 for ρ 6= ρ ′.

(11)

The upper sign is for the parabosons; the lower sign is for the parafermions. We see that the
operatorsdρk andd+

ρk in the parafermionic case are the fermionic operators at the sameρ, and
they are bosonic operators at differentρ (the picture is similar in the parabosonic case).

The value ofp in equation (10) is called the rank of the parastatistics and corresponds to
the maximum number of particles which can occupy one state. Ifp = 1, the parastatistics
turns into the Fermi–Dirac statistics; forp → ∞ it turns into the Bose–Einstein statistics.
The statistical properties and thermodynamic functions of an ideal gas of paraparticles are
presented in Isihara’s book [19].

Although, all elementary particles known at present are bosons or fermions, the para-
statistics can be realized for quasiparticles. As was shown by one of the authors [20], the
quasiparticles in a periodical lattice (the Frenkel excitons and magnons) obey a modified
para-Fermi statistics of rankM, whereM is the number of equivalent lattice sites within
the delocalization region of collective excitations. Later on, the results [20] for the Frenkel
excitons and magnons were extended to polaritons [21,22], defectons in quantum crystals [23]
and to the Wannier–Mott excitons [24]. Below, we study the statistics and some properties of
a system of non-interacting holons following the approach developed in reference [20].
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2. Statistics and some properties of holon gas

The holon operatorsBq, B+
q are connected with the hole operatorsbn, b+

n by a unitary trans-
formation (6), i.e.,

1

M

∑
q

u∗
qn′uqn = δnn′. (12)

Since the hole operators obey neither the boson nor the fermion commutation relations, the
unitary transformation in the general case is not canonical; this means that it does not preserve
the commutation properties of the operators transformed. In fact, using the commutation
relations for the Pauli operators, equations (3)–(5), the following commutators hold:[

Bq, B
+
q′
]
− = M−1

∑
n

uqnu
∗
q′n(1 − 2b+

nbn) (13)

[
Bq, B

+
q′
]

+
= M−1

∑
n

uqnu
∗
q′n + 2M−1

∑
n,n′

′
uqnu

∗
q′n′b

+
n′bn (14)

where the prime on the summation sign means thatn 6= n′.
For a simple periodical lattice with one atom (molecule) per cell, the unitary transformation

that diagonalizes the Hamiltonian is completely determined by the translational symmetry of
the lattice; in such a caseuqn in equation (6) is given by

uqn = exp(−iq · rn). (15)

Therefore, we obtain[
Bq, B

+
q′
]
− = δqq ′ − 2

M

∑
n

exp{i(q′ − q) · rn}b+
nbn (16)

[
B+

q , B+
q′
]
− = [

Bq, Bq′
]
− = 0 (17)

and [
Bq, B

+
q′
]

+
= δqq ′ +

2

M

∑
n,n′

′
exp{i(q′ · rn′ − q · rn)}b+

n′bn. (18)

The sums on the right-hand side of commutators (16) and (18) disappear if we calculate the
trilinear commutators as in the parastatistics. For the para-Fermi case we obtain[[

B+
q , Bq′

]
− , Bq′′

]
−

= −2M−1Bq q = q′ + q′′ − q (19)[[
B+

q , Bq′
]
− , B+

q′′

]
−

= 2M−1B+
q q = q − q′ + q′′. (20)

The relations (19) forq = q′′ and (20) forq′ = q′′ are, within a normalization factorM,
identical with the commutation relations for parafermions (see equations (9)). But for arbitrary
q, q′ andq′′ there is one essential difference from the parafermion relations. In the latter there
is a Kronecker symbol whereas in equations (19) and (20) the Kronecker symbol is absent;
the state vectorq on the right-hand side of (19) and (20) is determined by the quasimomentum
conservation law. This leads to important physical consequences which we will discuss below.

To determine the action of the operatorBq on the vacuum state|0〉, the ground state at
the Fermi level, it suffices to find the action of the Pauli operators on this state. The Pauli
operators satisfy

bn|0〉 = 0 bn′b+
n|0〉 = δnn′ |0〉 (21)

and for the holon operators we obtain the same result:

Bq|0〉 = 0 Bq′B+
q |0〉 = δqq ′ |0〉. (22)
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Using the definition of the operatorsB+
q , equation (6), and the commutation relation forb+

n,

we can see that for the two-particle case

(B+
q )2|0〉 = 2M−1

∑
n<n′

u∗
qn′u

∗
qnb

+
n′b

+
n|0〉. (23)

For the general case,N < M,

(B+
q )N |0〉 =

(
N !

MN/2

) ∑
n1<n2<···<nN

u∗
qnN

· · · u∗
qn1

b+
nN

· · · b+
n1

|0〉 (24)

and for the maximum value,N = M,

(B+
q )M |0〉 =

(
M!

MM/2

)
u∗

qnM
· · · u∗

qn1
b+

nM
· · · b+

n1
|0〉. (25)

In the caseN = M + 1 we will always have two particles at one site; therefore, using equation
(4), we obtain

(B+
q )M+1|0〉 = 0. (26)

Thus, one state can be occupied by up toM quasiparticles. This means that holons satisfy
some modified para-Fermi statistics of rankM. It is important to stress that this conclusion
does not depend on the special choice of the unitary transformation (15) and is valid also for
quasiparticles in a complicated lattice with several atoms (molecules) per cell. In the case of
lattices with one atom (molecule) per cell the trilinear commutation relations transform to the
simple form given by equations (19) and (20).

A function describing a state ofN non-interacting particles, each with energyεq, is given
by the usual expression

|Nq〉 = CN(B+
q )N |0〉. (27)

To find the expression for the normalization factor it is convenient to use the following operator
equation, which is obtained from equation (20):

BqB
+
q′B

+
q′′ = B+

q′BqB
+
q′′ + B+

q′′BqB
+
q′ − B+

q′′B
+
q′Bq − 2

M
B+

q q = q′ + q′′ − q (28)

or following from it

Bq′(B+
q )2 = 2B+

q Bq′B+
q − (B+

q )2Bq′ − 2

M
B+

q q = 2q − q′. (29)

Using equation (29) and the induction method, we find the expression for the normalization
factor, which differs from that for a Bose system:

CN =
[
N !

(
1 − 1

M

)(
1 − 2

M

)
· · ·

(
1 − N − 1

M

)]−1/2

. (30)

The results of applying the operatorsB+
q andBq to the state vector|Nq〉 = CNq

(B+
q )Nq |0〉

are

B+
q |Nq〉 =

√
(Nq + 1)

(
1 − Nq

M

)
|Nq + 1〉 (31)

Bq|Nq〉 =
√

Nq

(
1 − Nq − 1

M

)
|Nq − 1〉. (32)

Equation (31) shows that the effect of applyingB+
q on a state with a maximum occupation

numberNq = M is equal to zero. AsM → ∞, relations (31) and (32) turn into the well
known relations for bosons.
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From equations (31) and (32), it follows that

B+
q Bq|Nq〉 = Nq

(
1 − Nq − 1

M

)
|Nq〉. (33)

This means that the operatorB+
q Bq is not a particle number operator as in the case of boson,

fermion or paulion operators. For the commutator we obtain[
Bq, B

+
q

]
− |Nq〉 =

(
1 − 2Nq

M

)
|Nq〉. (34)

Hence,

1

2
M(1 − [

Bq, B
+
q

]
−)|Nq〉 = Nq|Nq〉. (35)

Thus, the operator of the particle number in stateq is

N̂q = 1

2
M(1 − [

Bq, B
+
q

]
−). (36)

The trilinear commutation relation (20) can be expressed via theN̂q as[
N̂q, B

+
q′
]
− = B+

q′ . (37)

The parafermionic commutation relation, because of the Kronecker symbol, gives for the
particle number operator, instead of equation (37), the relation[

N̂q, B
+
q

]
− = B+

q . (38)

Equation (38) is the commutation relation which must be fulfilled by the operator of particle
number: the action of the commutator (38) on the state|Nq〉 is equivalent to the increase of the
eigenvalue of the operator̂Nq, while the commutation relation (37) leads to an unusual result:
the eigenvalue of the operator̂Nq depends upon the occupation number of stateq′ for all states
q′. From this, it follows that the operator̂Nq cannot belong only to the stateq and has to be
considered as the operator of the total number of quasiparticles. It is easy to show that this is
indeed the case.

Substituting equation (16) into the expression (36) forN̂q, we obtain

N̂q = 1

2
M(1 − [

Bq, B
+
q

]
−) =

∑
n

b+
nbn = N̂ . (39)

Since the number of quasiparticles is equal to the number of holes at the sites, the operator
(36) is the operator of the total number of quasiparticles, and it does not depend onq. From
equation (39) it follows that[

Bq, B
+
q

]
− = 1 − 2N̂

M
. (40)

This means that, for〈N̂〉 � M, the quasiparticles satisfy the Bose statistics with good accuracy.
The Hamiltonian of an ideal gas of holons must be linear in the particle number operator:

H =
∑

q

εqN̂q. (41)

As was shown above, we cannot introduce the holon number operator for a particular state
because of the immanent coupling of different holon states even in the absence of dynamical
interaction. Thus, it is impossible to describe an ideal gas of holons beyond the Bose
approximation which is valid only for small concentration of holons. In general, the interaction
between quasiparticles is always present. This kind of interaction depending on the deviation of
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quasiparticle statistics from the Bose (Fermi) statistics is called, after Dyson [25], thekinematic
interaction.

In order to estimate the magnitude of the kinematic interaction, it suffices to calculate the
expectation value of the Hamiltonian (7) with the state vector (27):

ENq
= 〈Nq|H |Nq〉 = C2

N 〈0|BN
q

∑
q′

εq′B+
q′Bq′(B+

q )N |0〉. (42)

To calculate this mean value it is convenient to use the operator equation (28) and the properties
given by equation (22). As a result, for two quasiparticles with energyεq, we obtain

E2q
= 2εq

(
1 − 1

M

)
+

2

M − 1

1

M

∑
q′ (6=q)

εq′ (43)

and for the general case ofN quasiparticles

ENq
= Nεq

(
1 − N − 1

M

)
+

N

M − 1

N − 1

M

∑
q′ (6=q)

εq′

= N

[
εq +

N − 1

M

(
1

M − 1

∑
q′ (6=q)

εq′ − εq

)]
. (44)

The second terms in equation (44) contain the concentration of quasiparticles.
Equation (44) can be written as

ENq
= N

[
εq +

N − 1

M
(ε − εq)

]
(45)

where

ε = 1

M − 1

∑
q′ (6=q)

εq′ (46)

denotes the mean energy of the holon band. In equation (45) the second term describes the
kinematic interaction, so the holon gas acquires a more ideal behaviour when the energyεq

comes nearer to the mean energyε of the band.
The number of holons is equal to the number of created holes. The latter cannot exceed

the number of lattice sitesM at which the hole can be created. So, all created holons can
occupy one state, for example the ground state. This means that, in spite of the non-bosonic
behaviour of the holon gas, there is no statistical prohibition of the Bose–Einstein condensation
phenomenon in holon systems. On the other hand, the holon gas is always non-ideal (because of
the kinematic interaction). The study of the Bose–Einstein condensation in non-ideal systems
requires a special treatment of the stability of the Bose condensate [26]. For rigorous study of
this problem we must also include a dynamic interaction and consider an interplay between
kinematic and dynamic interaction in the holon system, as was done for the molecular exciton
system in reference [27].

The method developed here can be extended to study the system of coupled holes in high-
Tc superconducting ceramics. In this case it is convenient to use the Hubbard model with
the coupled interaction term—this means the hole–hole attractive interaction, which could be
simple and general because it does not depend explicitly on the nature of interactions between
holes; they are included as parameters in the Hamiltonian. The coupling could also have
s-wave nature as in the BCS case or d-wave nature [28]. It is well known that the positive
pairs in high-Tc ceramics have localized nature; the correlation length in CuO2 planes is of the
order of 10–12 Å. To reveal the statistics of the hole pairs a special study is needed, though we
can expect the system of such coupled localized hole pairs to obey some modified para-Fermi
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statistics like the holon system studied, but with the rankM ′ = M/m, wherem is the number
of sites in the localized region of two coupled holes. So, the number of possible pairs cannot
be larger than the rank of the parastatistics describing the coupled hole pairs. This means
that there are no statistical hindrances to the Bose–Einstein condensation of hole pairs. Note
that for the low-hole-density limit (the one-pair problem), we obtain the same result for the
binding energy as in the Cooper pair case. Details of this problem and a study of the many-pair
problem that is under way will be published elsewhere.

3. Conclusions

We have studied the statistical properties of the collective charge states (holons) in a periodical
lattice using the exact trilinear commutation relations for the holon operators. As was shown,
the holons obey the modified para-Fermi statistics of rankM, whereM is the number of lattice
sites at which the hole can be created, i.e. one state can be occupied by up toM holons. The
number of holons is equal to the number of holes and cannot be larger than the numberM of
sites. Thus, there is no statistical prohibition of the Bose–Einstein condensation phenomenon
in holon systems.

The second important conclusion of this study is that, in general, the system of dynamically
non-interacting holons cannot be considered as an ideal gas. In the holon system the immanent
interaction is always present and so is the coupling of all states of the holon band (the so-called
kinematic interaction). The magnitude of the kinematic interaction is proportional to the holon
concentration,N/M, and has the same order as the corrections for the non-Bose behaviour
in the commutation relations for the holon operators. This means that the holon gas can be
considered as ideal only in the Bose approximation which is valid at small concentration.

The approach developed in this study can be extended to the system of coupled holes
in high-Tc superconducting ceramics, since it is well known that the positive pairs in high-
Tc ceramics have a localized nature with a correlation length in CuO2 planes of the order
of 10–12 Å. Thus, there is no statistical prohibitions of the phenomenon of Bose–Einstein
condensation of coupled hole pairs, although to establish the Bose–Einstein mechanism it is
necessary to perform a study of the stability of the Bose condensate.
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